EXAM EXPECTATIONS MYP Biology

"Unit 8 Bacteria, Viruses & Origins"

STATE that bacteria are prokaryotes

STATE the role of a nuclear envelope

STATE that DNA is chemically more stable than RNA

STATE the fossil record dates back to 3.5 billion years ago

STATE the most common approach for preventing viral infections in humans

STATE that antibiotics are used for bacterial infections and useless against viral infections

STATE that oxygen was the least abundant gas in the early (billions years ago) earth's atmosphere STATE that a solution with a pH of 7 is neutral, less than is acidic and greater than 7 is basic

STATE the most likely candidate for life's first genes

DEFINE bacteriophage

DEFINE pathogens

DEFINE binary fission

DEFINE capsids, capsomeres

DEFINE genomes

DEFINE sex pilus

DEFINE flagellum

DEFINE glycoproteins

DEFINE prophage, provirus

DEFINE viroids

DEFINE retroviruses

DEFINE antiseptics, antibiotics

DEFINE methane

DEFINE meiosis, mitosis

DEFINE crossing over (during meiosis)

DEFINE haploid, diploid

DEFINE gametes

DEFINE thermoacidophile

DEFINE primary producer

LIST ways in which animals obtain nitrogen for their use

LIST in chronological order the major events in earth's history (limited to our powerpoint)

LIST evidence that supports the endosymbiotic theory

LIST the order of events that lead to the origin of life (limited to the powerpoint)

LIST the products produced in the Miller-Urey Experiment

IDENTIFY the free living cells that provided earth with its oxygen

IDENTIFY the function / role of reverse transcriptase

IDENTIFY the freezing point and boiling point of water in Celsius

OUTLINE mitochondria

OUTLINE nitrogen fixation

OUTLINE nitrogen cycle

OUTLINE bacterial reproduction

OUTLINE the structure of viruses

OUTLINE the different types of viruses

OUTLINE the reproduction of viruses

OUTLINE ocean and air currents

OUTLINE the role that bodies of water play on surrounding land temperatures

OUTLINE why early genetic systems switched from RNA to DNA

OUTLINE host range

OUTLINE the primary ecological role of bacteria

OUTLINE the location and structure of a prokaryotic flagellum

OUTLINE hypotonic, hypertonic and isotonic solutions

OUTLINE the endosymbiotic theory

OUTLINE lytic and lysogenic cycles

OUTLINE protobionts

COMPARE gram positive and gram negative bacteria (keep it simple)

COMPARE the structure and function of bacterial endospores and bacterial capsules

COMPARE the structure and function of bacterial cell walls and their own plasma membrane

COMPARE autotrophs, heterotrophs, chemotrophs and phototrophs

COMPARE lytic phages and lysogenic phages

COMPARE the effects of hypotonic solution on a cell with cell wall versus one without a cell wall

COMPARE the effects of hypertonic solution on a cell with cell wall versus one without a cell wall

COMPARE a typical prokaryotic genome with a typical eukaryotic genome (shape, size, composition, etc)

COMPARE parasitism, mutualism and commensalism

EXPLAIN why viruses are considered obligate parasites

EXPLAIN why someone with the herpes virus could have "flare-ups" for the rest of their life

EVALUATE whether a given statement would support or not support the abiotic synthesis of life

DISCUSS the genetic variation found in bacteria and the source of this variation

DISCUSS the event(s) surrounding snowball earth

DISCUSS the event(s) surrounding the formation of pangea

DISCUSS the types of features of living organisms that are more and less likely to become fossilized

SUGGEST the effects of removing all bacteria from earth

SUGGEST the effects of plate tectonics, specifically the effects of two continental land masses converging

SUGGEST ways in which bacteria could be considered more successful on earth than humans