EXAM EXPECTATIONS MYP Biology

"Unit Five- Common Challenge: Gas Exchange"

STATE the blood vessel where exchange between blood and interstitial fluid occurs

STATE the role of cholesterol in plasma membranes

STATE the first and second Laws of Thermodynamics

STATE that gases diffuse from higher partial pressures to lower partial pressures

STATE the blood vessel with the lowest blood velocity

STATE the color of light that contributes the least energy to photosynthesis

STATE that gas exchange across membranes is a passive process

STATE the source of carbon for photosynthesis

STATE the ultimate source (a process) of our food and oxygen

STATE the organelle in which cell respiration occurs

STATE the organelle in which photosynthesis occurs

STATE chemical bonds store potential energy

STATE the name of the muscle sheet that help move air in and out of the lungs

STATE that aerobic respiration produces far more ATP per glucose molecule than any other mode of ATP production

STATE that air holds more oxygen than water (assuming equal volumes)

STATE that water is more dense than air, also that it is a more viscous fluid

STATE that gas exchange in water saves energy by not having to maintain a wet respiratory surface

STATE muscle soreness associated with exercise is partly due to a build up of lactic acid

STATE 2 general uses that plants have for the sugars they produce through photosynthesis

DEFINE anaerobic, aerobic

DEFINE glycolysis

DEFINE entropy

DEFINE chemiosmosis

DEFINE photorespiration

DEFINE fermentation

DEFINE grana, stroma, thylakoids

DEFINE lipids

DEFINE interstitial fluid

IDENTIFY reactants and products in a chemical equation

IDENTIFY the overall chemical equation for cell respiration, for photosynthesis

IDENTIFY two basic types of circulatory systems that have evolved

IDENTIFY an animal from a list that posses a single circuit of blood flow and a 2 chambered heart

IDENTIFY characteristics of molecules that would allow them to pass freely through membranes

OUTLINE why animals need a constant supply of oxygen

OUTLINE trade-offs of gas exchange in water versus on land

OUTLINE the relationship between the greenhouse effect and photosynthesis, and carbon dioxide

OUTLINE the route that air travels into and out from a human

OUTLINE the role of hemoglobin

OUTLINE the role of surface area with gas exchange

OUTLINE the structure and function of fish gills

OUTLINE how blood is transported by the blood

OUTLINE the relative size and number of blood vessels as blood moves away from the heart

OUTLINE the velocity and pressure of blood as it moves away from the heart

OUTLINE gas exchange in a leaf

OUTLINE the relationship between the greenhouse effect and fossil fuels, deforestation and the Industrial Revolution

OUTLINE how cells capture energy released by cell respiration

OUTLINE carbon fixation

OUTLINE how solutes and temperature effect the amount of dissolved oxygen in water

OUTLINE selective permeability (in reference to membranes)

OUTLINE the flow through the systemic and pulmonary circuits

OUTLINE the role of the lymphatic system

DESCRIBE the greenhouse effect

DESCRIBE the adaptations that an animal would need if it were to exchange gas with its body surface

DESCRIBE fluid mosaic model that describes plasma membranes

DESCRIBE the unique adaptation in birds that makes their respiratory system extremely efficient

DESCRIBE alcohol fermentation

COMPARE endothermic and exothermic reactions

COMPARE the entropy change in endothermic and exothermic reactions

COMPARE the potential energy of reactants and products in an endothermic reaction

COMPARE the potential energy of reactants and products in an exothermic reaction

COMPARE anaerobic and aerobic respiration (in general, stick to powerpoint info)

COMPARE lactic acid fermentation and alcohol fermentation

COMPARE potential and kinetic energy

COMPARE autotrophs and heterotrophs

COMPARE chemotrophs and phototrophs

COMPARE organic and inorganic compounds

COMPARE respiration and cellular respiration

COMPARE obligate aerobes, microaerophiles, aerotolerant anaerobes, facultative anaerobes, and obligate anaerobes

COMPARE passive and active transport

COMPARE diffusion and facilitated diffusion

COMPARE osmosis and diffusion

EXPLAIN the mechanism of breathing (ventilation) in humans

EXPLAIN the counter-current exchange that occurs in fish gills

EXPLAIN diffusion

EXPLAIN the relationship between air pressure and elevation

EXPLAIN why circulatory systems are needed for gas exchange in large animals

PREDICT the movement/direction of water across a membrane given solute concentrations on both sides on the membrane

DISCUSS why an animal must eat 100 pounds of food to gain 10 pounds of muscle

SUGGEST a consequence(s) if a cell can longer produce ATP