EXAM EXPECTATIONS MYP Biology EXAM

"Unit 3- Common Challenges: Nutrition & Thermoregulation"

STATE that plant cells do both cellular respiration and photosynthesis

STATE the organelle in which photosynthesis occurs

STATE the organelle in which cellular respiration occurs

STATE the charge of H and K ions

STATE that opposite charges attract

STATE where bile is produced, where it is stored

DEFINE digestion

DEFINE endotherms, ectotherms

DEFINE thermoregulation

DEFINE aerophiles

DEFINE hibernation

DEFINE colonialism

DEFINE symbiosis

DEFINE mutualism

DEFINE rabies

DEFINE estivation

DEFINE cilia, flagella

DEFINE rugae

DEFINE mold

DEFINE sporangia

DEFINE ecosystem

DEFINE chemiosmosis

DEFINE anaerobic respiration

DEFINE glycolysis

DEFINE digestive enzymes

DEFINE septic tank

LIST physiological responses that occur when the body becomes overheated

LIST the order of stages that occur during food processing

LIST the three most common macronutrients found in commercial fertilizers

LIST the most important decomposers of organic material

LABEL incisors, canines and molars from a model of a mouth/teeth

IDENTIFY conduction from a model of heat transfers

IDENTIFY a macronutrient that plants derive from the air

IDENTIFY an autotroph from a list of living organisms

IDENTIFY the chemical reaction for cell respiration from a list of possibilities

IDENTIFY an an organism that has a gastrovascular cavity from a list of living organisms

IDENTIFY the pancreas, liver, stomach and gall bladder from a model

OUTLINE torpor

OUTLINE hibernation

OUTLINE the role of the large intestine/colon

OUTLINE the roles of each part of the human digestive tract and its accessory organs

OUTLINE the role of NADPH in photosynthesis

OUTLINE essential nutrients

OUTLINE homeostasis

OUTLINE carnivorous plants

OUTLINE where most of a plant's mass is derived from

OUTLINE root hairs

OUTLINE convection, conduction, evaporation, induction and radiation

OUTLINE the stages of food processing

OUTLINE a greenhouse

OUTLINE a gizzard

OUTLINE the contents a commercial potting mix (in general)

OUTLINE how cells capture and release energy during cell respiration

OUTLINE mycorrhizae

OUTLINE nitrogen fixation

DESCRIBE an adaptation found in Koala bears that help them to better digest plant material

DESCRIBE the location(s) and function(s) of villi/microvilli in the digestive system

DESCRIBE why plants make glucose

COMPARE carnivores, herbivores, and omnivores

COMPARE substrate feeding, fluid feeding, filter feeding and bulk feeding

COMPARE the light reactions and the calvin cycle in photosynthesis (keep it general)

COMPARE hyphae and mycelia

COMPARE convection, conduction, evaporation, induction and radiation

COMPARE micronutrients and macronutrients

COMPARE chemoautotrophs, photoautotrophs, chemoheterotrophs, photoheterotrophs

EXPLAIN carbon fixation

EXPLAIN the energy transfer(s) that occur in the mitochondria, the chloroplasts

EXPLAIN why digestion must take place in specialized compartments

DEDUCE a conclusion from experimental data (from van Helmont's experiment)

DEDUCE convection, conduction, evaporation, induction and radiation from a given scenario

DEDUCE the tonicity (hypertonic, hypotonic or isotonic) of a surrounding solution from the direction of water movement depicted in a model

DISCUSS van Helmont's experiment with Willow seedlings

DISCUSS why the nitrogen fixing ability of plants is important in agricultural research

DISCUSS why salty soils are so detrimental to plants

SUGGEST reasons why mutualistic relationships between plants and other organisms may have evolved

SUGGEST the consequences of killing all the fungi in a given ecosystem

ANALYZE a model to determine to charge of a soil particle

ANALYZE a model of nitrogen fixation to identify the nitrogen fixing bacteria