EXAM EXPECTATIONS MYP Biology "Unit Two-Ecology"

STATE the aquatic biome in which salt water and fresh water are mixed

STATE the 2 classes organic molecules that require nitrogen to build them (the 2 classes that do not..)

STATE the average/usual amount of energy transferred from trophic level to another

DEFINE phylogeny

DEFINE genetic drift

DEFINE biomass

DEFINE organic molecules

DEFINE glycolysis

DEFINE cell respiration

DEFINE photosynthesis

DEFINE hydrolysis and dehydration synthesis

DEFINE atmosphere, lithosphere, hydrosphere and biosphere

DEFINE invasive species

DEFINE niche

DEFINE detritivores, decomposers

DEFINE mutations

DEFINE protozoa

DEFINE species

DEFINE symbioses

DEFINE reciprocal

LIST ways in which prey species might avoid predation

LABEL the process of transpiration on a model of the water cycle

LABEL the process of cellular respiration on a model of the carbon cycle

LABEL the process of nitrogen fixation on a model of the nitrogen cycle

LABEL the different zones in a model of aquatic biomes

APPLY the use of (+) and (-) symbols to explain interspecific interactions

IDENTIFY the type of symbiosis from a example

IDENTIFY polar, temperate and tropical zones on earth

IDENTIFY the different zones in aquatic ecosystems

IDENTIFY the process that builds most of the organic molecules found on earth

IDENTIFY an example of primary or secondary succession

OUTLINE primary and secondary production

OUTLINE community

OUTLINE ecosystems

OUTLINE resource partitioning

OUTLINE competitive exclusion

OUTLINE coevolution

OUTLINE interspecific and intraspecific competition

OUTLINE adaptations

OUTLINE evolution

OUTLINE EI Nino

OUTLINE red tides

OUTLINE the two most fundamental and important processes that occur in ecosystems

OUTLINE the general climate, flora and fuana for each biome

DESCRIBE global wind patterns

DESCRIBE eutrophication

DESCRIBE the following biogeochemical cycles: water, carbon and nitrogen

COMPARE movement of water in the atmosphere at the equator and 23 degrees north and south latitude

COMPARE solar input and seasonal variation latitude

COMPARE seasonal variation and latitude

COMPARE range and distribution (from an ecology standpoint)

COMPARE species abundance and species richness

COMPARE producers and consumers

COMPARE primary and secondary succession

COMPARE food webs and food chains

COMPARE divergent and convergent evolution

COMPARE carnivores, herbivores and omnivores

COMPARE herbivory, predation, parasitism, competition, mutualism and commensalism

COMPARE day length with latitude

PREDICT the consequences of adding or removing a given organism from food web

PREDICT the consequences of altering nutrients to an aquatic ecosystem

CALCULATE energy available at one trophic level when given the energy of another trophic level

SUGGEST which biome might be more productive than another

SUGGEST which biome might be more physically demanding on the organisms that live there