EXAM EXPECTATIONS MYP Biology

"Common Challenges-Sense & Respond"

STATE the relationship between body size and energy efficiency in any mode of locomotion

STATE the relative energy efficiencies of different modes of locomotion (per distance) and (per time)

STATE the origin of neurotransmitters in the sliding filament theory

STATE that diversity in locomotion is a result of diverse skeletal and muscular systems

STATE the role of statoliths in gravitropism

STATE that prokaryotic flagella structurally and functionally resembles an outboard motor on a boat

STATE that neurotransmitters leave the presynaptic terminal by exocytosis

STATE the structure that has a 9+2 arrangement of microtubules

STATE the two main forces friction and gravity that organisms must overcome to move

STATE three general functions of the nervous system

DEFINE a coral

DEFINE a sponge

DEFINE a barnacle

DEFINE sessile and motile

DEFINE a node of Ranvier

DEFINE antagonistic muscles

DEFINE tension

DEFINE air resistance

DEFINE autotrophic and heterotrophic

DEFINE starch

LIST the types of protein fibers that make up the cytoskeleton

LIST examples of plant movements

LIST examples of stimuli that cause plants to respond

LIST movement(s) unique to hydras

LIST the cost and benefits of locomotion

LIST important adaptations necessary for flight

LABEL (names) and OUTLINE (events) on a graph of an action potential

LABEL the parts of a neuron

LABEL the parts of a sarcomere

IDENTIFY a type movement that a animal with a hydroskeleton can not perform

IDENTIFY a type movement that a animal with a exo/endoskeleton can not perform

IDENTIFY examples of sessile organisms

IDENTIFY a presynaptic vesicle

IDENTIFY the parts/organization of muscle from gross anatomy to the sarcomeres

IDENTIFY a scenario as depicting a benefit or cost of locomotion

IDENTIFY roles of actin and myosin in locomotion

IDENTIFY cellular structures that are directly involved in locomotion from a list

IDENTIFY cellular proteins (fibers) that are directly involved in locomotion from a list

IDENTIFY kingdom with organisms that might use the sliding filament theory to describe their movement

IDENTIFY an illustration of a sarcomere

OUTLINE the role of calcium in muscle contractions

OUTLINE plant's general response to stimuli

OUTLINE the movement in an amoeba

OUTLINE the movement in an earthworm

OUTLINE the role of presynaptic vesicles

OUTLINE general fungal mechanisms of response to stimuli

OUTLINE the role of the axon hillock

OUTLINE the role that dyneins play in cilia function

OUTLINE the structure of eukaryotic cilia and flagella

OUTLINE the structure of prokaryotic flagella

OUTLINE the function of prokaryotic flagella

OUTLINE directional movement in prokaryotes

OUTLINE the all the parts of an actin filament

OUTLINE the body shape of aquatic mammals and most fish

DESCRIBE the role and function of sodium/potassium pumps

DESCRIBE the events of an action potential

DESCRIBE the sequence of events (in order) from muscle excitation to contraction

DESCRIBE how the skeletal system and the muscular system work together in locomotion

COMPARE the response to gravity in roots and shoots (stems)

COMPARE positive and negative tropisms

COMPARE extensors and flexors

COMPARE positive and negative taxis / tropisms

COMPARE the structure, function and composition of exoskeletons and endoskeletons

COMPARE ligand gated and voltage gated channels and their role in nervous signal transmission

COMPARE your arm to a third class lever

COMPARE eukaryotic and prokaryotic flagella

COMPARE movement between animals with hydroskeletons and exo/endoskeletons

COMPARE the folding of Mimosa leaflets and closing stomata

EXPLAIN gravitropism

EXPLAIN thigmotropism

EXPLAIN sliding filament theory

EXPLAIN the role of calcium in muscle contraction

EXPLAIN how resting potentials are restored after an action potential

EXPLAIN phototropism

PREDICT which animal would have to overcome the greatest friction based upon its mode of movement

PREDICT the effect of low calcium levels on muscles

DISCUSS why sessile animals are not "strictly immobile"

SUGGEST why one body shape may be suited for one type of movement over another

SUGGEST why a mature tree(s) might appear to be growing sideways