| • | | | | | |------------------------------------|--|--|--|-----------| | Name | | Class: | Date: | ID: A | | Ther | noregulation Exam | | | | | Multip
Identif | ole Choice
by the letter of the choice that | best completes the stater | ment or answers the question. | | | 2. 3. | a. phospholipids and cellule b. nucleic acids and protein c. phospholipids and protein d. proteins and cellulose e. glycoproteins and chole Which of the following is note. a. The increase in product | es of molecules are the malose ins eins esterol of an aspect of temperatution of certain enzymes be | ajor structural components of the cell re acclimation? y cells. | membrane? | | 4. | b. Cells may produce enzyc. Organisms may adjust sd. The proportion of satur | ymes with different tempersome of the mechanisms atted and unsaturated fats of proteins that cannot we tractor(s) affecting the dispatterns. | erature optima. that control internal temperature. may change in cell membranes. ithstand extreme temperature. | | | 5. | e. day length and rainfall. Species richness increases as one travels porth from | | | | - as one travels north from the equator. a. - as one travels north from the South Pole. b. - on islands as distance from the mainland increases. c. - as rates of transpiration decrease. d. - as community size decreases. Refer to the figure below to answer the following questions. - 6. Which curve represents the behavior of an enzyme taken from a bacterium that lives in hot springs at temperatures of 70°C or higher? - a. curve ! - b. curve 2 - c. curve 3 - d. curve 4 - e. curve 5 - 7. Plant cells begin synthesizing large quantities of heat-shock proteins - a. after the sun sets. - b. in response to the lack of CO₂ following the closing of stomata. - c. when desert plants are quickly removed from high temperatures. - d. after the plant cells freeze in order to thaw them. - e. when the air around species from moderate temperature regions is above 40°C or more. - 8. Temperature regulation is important to organisms for many reasons Choose the statement below that is not reason for temperature regulation. - a. Temperature effects solubility of gases. - b. High temperatures can alter the structure of important biological molecules. - c. Temperature effects a membrane's permeablity. - d. Cold temperatures between (between 0-5 degrees Celcius) cause mutations in DNA. - e. Freezing temperatures can cause ice crystals to form and puncture the cell membrane. - 9. Which of the following is the best example of an effector's response in negative feedback? - a. an increase in body temperature resulting from shivering - b. an increase in body temperature resulting from exercise - c. an increase in body temperature resulting from exposure to the sun - d. an increase in body temperature resulting from fever - e. a decrease in body temperature resulting from shock - 10. The tertiary structure of a protein is the - a. bonding together of several polypeptide chains by weak bonds. - b. order in which amino acids are joined in a polypeptide chain. - c. unique three-dimensional shape of the fully folded polypeptide. - d. organization of a polypeptide chain into an á helix or â pleated sheet. - e. overall protein structure resulting from the aggregation of two or more polypeptide subunits. - 11. Ectothermic animals - a. are more likely to use metabolism for heat. - b. shun the sun during the daylight hours. - c. are more adapted to cold. - d. are more likely to use behavioral temperature regulation. - e. all of these - 12. The α helix and the β pleated sheet are both common polypeptide forms found in which level of protein structure? - a. primary - b. secondary - c. tertiary - d. quaternary - e. all of the above Match the terms below to the following questions. Each term may be used once, more than once, or not at all - A. ectothermy - B. endothermy - C. evaporation - D. torpor - E. thermogenesis - 13. fur and feathers - a. A - b. B - c. C - d. D - e. E - 14. process that occurs in the brown fat of some mammals - a. A - b. B - c. C - d. D - e. E | Name | : | |------|--| | | | | 15. | panting in dogs | | | a. A | | | b. B | | | c. C | | | d. D | | | e. E | | 16. | absorption of heat from the surroundings | | | a. A | | | b. B | | | c. C
d. D | | | d. D
e. E | | 17 | The water lost during transpiration is an unfortunate side effect of the plant's exchange of gases. However, the | | 17. | plant derives some benefit from this water loss in the form of | | | a. evaporative cooling. | | | b. above average sugar production. | | | c. increased support and rigidity. | | | d. A and B only | | | e. A, B, and C | | 18. | Which organism is ectothermic and has little behavioral ability to adjust its body temperature? | | | a. lizard | | | b. sea star | | | c. king snake | | | d. hummingbird | | 10 | e. human | | 19. | Which of the following assertions about regulation of body temperature is <i>true</i> ? a. Most animals are endotherms. | | | a. Most animals are endotherms.b. Endothermy involves production of heat through metabolism. | | | c. Ectothermic animals have cold blood, they are "cold-blooded". | | | d. Mammals are always ectothermic. | | | e. Insects are always ectothermic. | | 20. | All of the following are responses of plants to cold stress except | | | a. the production of a specific "plant antifreeze". | | | b. preventing the formation of or removing ice crystals from the interior walls. | | | c. conversion of the fluid cell membrane to a solid one. | | | d. an alteration of membrane lipids so that the membranes remain flexible. | | | e. increasing the proportion of unsaturated fatty acids in the membranes. | | 21. | • | | | heat from the organism? | | | a. conduction | | | b. convectionc. radiation | | | c. radiation d. evaporation | | | e. metabolism | - b. The tertiary structure of the protein might be changed. - c. The biological activity or function of the protein might be altered. - d. Only A and C are correct. - e. A, B, and C are correct. - 26. Photosynthesis begins to decline when leaves wilt because - a. flaccid cells are incapable of photosynthesis. - b. CO₂ accumulates in the leaves and inhibits photosynthesis. - c. there is no water for photolysis during light reactions. - d. stomata close, preventing CO2 entry into the leaf. - e. the chlorophyll of flaccid cells cannot absorb light. - 27. Upon chemical analysis, a particular protein was found to contain 556 amino acids. How many peptide bonds are present in this protein? - a. 139 - b. 554 - c. 555 - d. 556 - e. 558 - 28. What is one of the ways that the membranes of winter wheat are able to remain fluid when it is extremely cold? - a. by increasing the percentage of unsaturated phospholipids in the membrane - b. by increasing the percentage of saturated phospholipids in the membrane - c. by decreasing the number of hydrophobic proteins in the membrane - d. A and C only - e. Band C only - 29. Most scientists agree that global warming is underway; thus it is important to know how plants respond to heat stress. Which of the following is an immediate short-term response of plants to heat stress? - a. the production of heat-shock carbohydrates unique to each plant - b. the production of heat-shock proteins like those of other organisms - c. the closing of stomata to increase evaporational heat loss - d. their evolution into more "desert like" plants - e. all of the above - 30. Convert -20 degrees Fahrenheit to Celcius. - a. -94 degrees Celcius - b. -20 degrees Celcius - c. -29 degrees Celcius - d. 22 degrees Celcius - e. 7 degrees Celcius - 31. Which of the following organisms relies on behavior the most to control its body temperature? - a. green frog - b. penguin - c. blue whale - d. house sparrow - e. gray wolf - 32. Most terrestrial animals dissipate excess heat by - a. countercurrent exchange. - b. acclimation. - c. vasoconstriction. - d. hibernation. - e. evaporation. - 33. Which prokaryotes should be expected to be most strongly resistant to DNA denaturation in very hot environments? - a. extreme halophiles - b. extreme thermophiles - c. methanogens - d. cyanobacteria - e. nitrogen-fixing bacteria that live in root nodules - 34. Which of the following is a reasonable explanation for why unsaturated fatty acids help keep any membrane more fluid at lower temperatures? - a. The double bonds form a kink in the fatty acid tail, forcing adjacent lipids to be further apart. - b. Unsaturated fatty acids have a higher cholesterol content. - c. Unsaturated fatty acids permit more water in the interior of the membrane. - d. The double bonds block interaction among the hydrophilic head groups of the lipids. - e. The double bonds result in a shorter fatty acid tail. Use the figure below to answer the following questions - 35. The temperature difference between arterial blood and venous blood near the goose's body - a. is minimized by countercurrent exchange. - b. is maximized because the blood has run through very cold feet. - c. is minimized by dilation of the capillaries in the feet of the goose, allowing heat to be lost. - d. is more than the difference between the venous blood near the body and the venous blood at the feet. - e. allows the goose to lose maximum heat to the environment. - 36. What does the difference in temperature between arteries and veins in the goose's legs indicate? - a. The legs need to be kept cool so that muscles will function well. - b. The feet need to be kept very warm so they do not freeze in water. - c. Arterial blood warms venous blood which helps the goose retain more heat and lose less heat to the environment. - d. Arterial blood returns heat to the core of the goose. - e. Warm venous blood carries away from the core of the goose. - 37. Which of the indowing is not true of enzymes? - a. Enzym, catalysis is dependent on the pH of the reaction environment. - b. Enzyme catalysis is dependent on the three-dimensional structure or conformation of the enzyme. - c. Enzymes produce energy for the reaction they catalyze. - d. Enzymes are composed primarily of protein. - e. Enzyme catalysis is dependent on the temperature of the reaction environment. - 44. Endothermic animals - a. use up more energy than ectotherms. - b. have more stamina than ectotherms. - c. have a higher metabolic rate than ectotherms. - d. have layers of fat to reduce heat loss. - e. all of these | Name: | | | |-------|--|--| | | | | - 45. The presence of cholesterol in the plasma membranes - a. enables the membrane to stay fluid more easily when cell temperature drops. - b. enables the membrane to stay viscous more easily when cell temperature increases. - c. enables the animal to freeze its membrane to prevent water loss. - d. A and B only - e. A, B and C. - 46. Where is the thermostat of vertebrates located? - a. medulla oblongata - b. thyroid gland - c. hypothalamus - d. subcutaneous layer of the skin - e, liver - 47. Which bonds are created during the formation of the primary structure of a protein? - a. peptide bonds - b. hydrogen bonds - c. disulfice bonds - d. phosphodiester bonds - e. A. B. and C - 48. Which of the following is true about the activity levels of a snake? - a. A snake is less active in winter because the food supply is increased. - b. A snake is more active in winter because it needs to avoid predators. - c. A snake is less active in summer because that is the period for mating. - d. A snake is more active in summer because it can gain body heat by conduction. - e. A snake is more active in summer as a result of being disturbed by other animals. - 49. Ignoring all other factors, what kind of day would result in the highest rate of transpiration assuming the stomata reamained opened? - a. cool, dry day - b. warm, dry day - c. warm, humid day - d. cool, humid day - e. very het, dry, windy day - 50. The transfer of heat by air or water is called - a. radiat.on. - b. conduction. - c. convection. - d. denaturing - e. evaporation. | | | | Ĭ. | |--|--|------|----| | | | | ٠, | | | | | * | : | | | | | | | | | . ** | : | İ | 1871-02 | ۵ | 401 | 0 | 1 | 2 | 3 🗀 | 4(). | |--|--------------------------------|-----------------|--|---------------|---------------------------|----------------------|---| | 2806 | group | 1st | digit 5 | 6 🔾 | 7 | 8 🔾 | 9 🗀 | | 1.5 mg | | 004 | <u></u> 0 | 1 | 2 | 3() | 4() | | 7339-8 | اَجُ کُل | 2 nd | digit 5 | 6 () | 7 () | 8() | 9 | | 48.55 | Set De | | 0 | 10 | 2 | 3 | 40 | | 47254524 | <u>.</u> | 3rd | digit 5 | 6 | 7 | .8 🔾 | 9 🔾 | | | Number
bubble in each digit | | | 1 | $\overline{2}$ | <u> </u> | 4 | | | Z | 4 th | digit | 6 | 7CD | 8 | 9 | | 200000 | | <u> </u> | | 10 | 2 | 3 | 4 | | 100 miles | mark only one | 5 th | digit 5 | | 7 | 8 | 9 🗆 | | 100 miles | 손 | <u> </u> | | _6
 | | <u> </u> | 4 | | 10000 | E S | 6 th | digit 0 ((()) | 6 | 7() | 8 | | | | | <u> </u> | | | | | _9 | | /(৪৯৫ই | . 1 | |)B | -c <u></u> | D | -E | | | | _ | ····A< | | C | D | EC) | F(| | X2576 | . 3 | | В | -C | D | -E | -r (| | | 4 | ····A(:::: | | c | | E | ~F() | | | 5 | A (| | -c | -D | -E | -F ◯ Š | | $r=r^{-1}T$ | 6 | ····AC | | ··C | DC | | F 80 | | 文(大陸 | 7 | —AC | —В <u>—</u> | -c | D | -E | –F 🔾 ଜି | | 180 | 8 | ····A (:::: |)B() | c: | D:∰∰ | EC | -F □ Jeg | | 25 | 9 | A @ | - | -c— | -D() | -E | | | 0.500 | 10 | ····A< |)B() | C@ | ···D() | E() | ~F∭ ॄ _ | | \$10° 100 | 11 | —AC | —В | -c— | -D@ | -EC | -ғ⊜ ะ | | 15.16 | 12 | ···· A { | В | cc::::: | D() | E() | F()) | | 大学を基 | 13 | -A | — В | -c— | —COQ— | -EO . | -F <u></u> | | 100 | 14 | ACIII | ВС | cc::::: | D() | ·· E 後黎 ···· | F() | | 1000 | 15 | -A | —-В○— | -C | -DO- | -E | -FC | | 40.96 | 16 | ···· A aga | }B(∷∷) | c | D() | E()) | ~F() | | 100 | 17 | — A 🕮 | — в— | -c— | -D | -E- | -F 🗀 | | 988 | 18 | A() | B | c(| D() | -ECD | -FCD | | 4.73 | 19 - | _AC | — В 🕮 — | -c— | -DC | -E | | | 1000 | 20 - | ACIII) | ВСТЭ | ··C鎏黝 | DC | ·EC.::) | -F -F -F -F -F -F -F -F | | 3.0% | 21 - | − A○ | —В— | -c— | -D | -E@## | -F ◯ སྡ་སྡ་སྡ་སྡ་སྡ་སྡ་སྡ་སྡ་སྡ་སྡ་སྡ་སྡ་སྡ་ས | | | 22 - | AC | ВС) | c() | DC∷:: | -Е ЕВ | ~FCD} ≩ | | 950 | 23 - | →A | — в — | -c— | - D 🕮 | -E | -F 🗀 | | 25.50 | 24 - | A() | ВССО | C G 競勢 | D() | -E() | FC | | 2547.6% | 25 - | | —B— | -cʻ— | -DC) | -E@ | - F ◯ | | 1417 | | | ВС) | | | | F() | | 中的 | 27 - | ~AC | —в— | -C | -D 🕽 — | -E | -F <u> </u> | | 李安皇 | | | ВСПЭ | | | | | | $(-1)^{\frac{1}{2}} \mathcal{A}_{1} \overset{d}{\sim} \mathcal{A}_{2}$ | | | —В□— | | | | | | 100 V | | | BC) | | | | | | 1.5% | | | <u>—В</u> | | | | | | 1,547,62 | | | BC | | | | · · · · · · · · · · · · · · · · · · · | | 2200.83 | | | —В | | | | . — 6 | | *155550 | | | ВСШЭ | | | | 29 | | 59.92 | | | В○ | | | | -ғ 🔾 မွ | | | | | ВСШЭ | | | | -FC⊃ 🖁 | | 1.54 | | | B | | | | | | 28.3% | | | BC | | | | | | | | | В | | | | -F 🗇 🚆 | | | | | ·····В | | | | ** | | 12 M 30 | | | — В | | | | | | | | | в | | | | scall | | | | | —B — | | | | -r 🔾 g | | | | | В | | | _ | . ئور | | | | -A | | | -D@D | | | | F 18 | | | ВСТЭ | | | | | | N + 48 | | | —в—— | | | | | | 1.500 | | | в | | | | ا رستاء. | | \$5.42° | | | —В—— | | | | | | 2000 | | | ВС) | | | | | | 44000 | ng september | | one se la companya de la companya d | tarun kemba | of all a photosofficies a | ekke bili aleysisi k | 5000000000 | . ٠, | · | | | |---|--|--| | · |