

Name of textbook: *BIOLOGY AP* Edition* Author(s): Campbell/Reece et al.

Edition: 7th Edition **Copyright:** 2005

Big Idea 1: The process of evolution drives the diversity and unity of life.

Essential knowledge	Chapters/sections	Illustrative examples covered
1.a.1 Natural selection is a major mechanism of evolution	22.2, 23.1	 Graphical analysis of allele frequencies in a population Application of the Hardy-Weinberg equilibrium equation
1.a.2 Natural selection acts on phenotypic variations in populations	23.2, 23.4	 Flowering time in relation to global climate change Peppered moth Sickle cell Anemia DDT resistance in insects Artificial selection Loss of genetic diversity within a crop species Overuse of antibiotics
1.A.3: Evolutionary change is also driven by random Processes	23.3	No illustrative examples listed in Curriculum Framework.
1.a.4 Biological evolution is supported by scientific evidence from many disciplines, including mathematics.	22.3, 26.2	 Graphical analyses of allele frequencies in a population Analysis of sequence data sets Analysis of phylogenetic trees Construction of phylogenetic trees based on Sequence data
1.b.1 Organisms share many conserved core processes and features that evolved and are widely distributed among organisms today.	26.1, 26.3, 26.4, 26.5	 Cytoskeleton (a network of structural proteins that facilitate cell movement, morphological integrity and organelle transport) Membrane-bound organelles (mitochondria and/or chloroplasts) Linear chromosomes Endomembrane systems, including the nuclear Envelope
1.b.2 Phylogenetic trees and cladograms are graphical representations (models) of evolutionary history that can be tested.	25.1, 25.2, , 25.3	 Number of heart chambers in animals Opposable thumbs Absence of legs in some sea mammals

Essential knowledge	Chapters/sections	Illustrative examples covered
1.c.1 Speciation and extinction have occurred throughout the Earth's history.	24.2, 24.3, 26.2	 Five major extinctions Human impact on ecosystems and species extinction rates
1.c.2 Speciation may occur when two populations become reproductively isolated from each other.	24.1	No illustrative examples listed in Curriculum Framework.
1.c.3 Populations of organisms continue to evolve.	24.2	 Chemical resistance (mutations for resistance to antibiotics, pesticides, herbicides or chemotherapy drugs occur in the absence of the chemical) Emergent diseases Observed directional phenotypic change in a Population (Grants' observations of Darwin's finches in the Galapagos) A eukaryotic example that describes evolution of a structure or process such as heart chambers, limbs, the brain and the immune system
1.d.1 There are several hypotheses about the natural origin of life on Earth, each with supporting scientific evidence.	4.1, 26.1,26.3, 26.4, 26.5	No illustrative examples listed in Curriculum Framework.
1.d.2 Scientific evidence from many different disciplines supports models of the origin of life.	26.6	No illustrative examples listed in Curriculum Framework.

Big Idea 2: Biological systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis.

Essential knowledge	Chapters/sections	Illustrative examples covered
2.a.1 All living systems	8.1, 8.2, 8.3	• Krebs cycle
require constant input of free		Glycolysis
energy.	9.1-9.5	Calvin cycle
		• Fermentation
	10.1, 10.2, 10.3	
		• Endothermy (the use of thermal energy
	40.1, 40.2, 40.3, 40.4,	generated by metabolism to maintain homeostatic
	40.5	body temperatures)
		• Ectothermy (the use of external thermal energy
	51.3	to help regulate and maintain body temperature)
	0.110	
	52.3, 52.4	• Seasonal reproduction in animals and plants
	02.0,02	• Life-history strategy (biennial plants and
	53.2	reproductive diapause)
	54.1, 54.3	
	51.1, 51.5	• Change in the producer level can affect the
		number and size of other trophic levels
		Change in energy resources levels such as
		sunlight can affect the number and size of the
		trophic levels
2.a.2 Organisms capture and	9.1-9.5	• NADP+ in photosynthesis
store free energy for use in		• Oxygen in cellular respiration
biological processes.	10.1, 10.2, 10.3	
biblogical processes.	10.1, 10.2, 10.5	
2.a.3 Organisms must	3.1, 3.2, 3.3	• Cohesion
exchange matter with the		Adhesion
environment to grow,	4.1, 4.2	• High specific heat capacity
reproduce, and maintain		Universal solvent supports reactions
organization.	6.2	Heat of vaporization
e		• Heat of fusion
		• Water's thermal conductivity
		, second s
		Root hairs
		• Cells of the alveoli
		• Cells of the villi
		• Microvilli
2.b.1 Cell membranes are	7.1, 7.2	No illustrative examples listed in Curriculum
selectively permeable due to	,	Framework.
their structure.		
L		1

Essential knowledge	Chapters/sections	Illustrative examples covered
2.b.2 Growth and dynamic homeostasis are maintained by the constant movement of molecules across membranes.	7.3, 7.4, 7.5	 Glucose transport Na+/K+ transport
2.b.3 Eukaryotic cells maintain internal membranes that partition the cell into specialized regions.	6.2, 6.3, 6.4, 6.5	 Endoplasmic reticulum Mitochondria Chloroplasts Golgi Nuclear envelope
2.c.1 Organisms use feedback mechanisms to maintain their internal environments and respond to external environmental changes.	40.2, 40.4, 40.5	 Operons in gene regulation Temperature regulation in animals Plant responses to water limitations Lactation in mammals Onset of labor in childbirth Ripening of fruit Diabetes mellitus in response to decreased insulin Dehydration in response to decreased antidiuretic hormone (ADH) Graves' disease (hyperthyroidism) Blood clotting
2.C.2 Organisms respond to changes in their external environments.	40.5	 Photoperiodism and phototropism in plants Hibernation and migration in animals Taxis and kinesis in animals Chemotaxis in bacteria, sexual reproduction in fungi Nocturnal and diurnal activity: circadian rhythms Shivering and sweating in humans
2.d.1 All biological systems from cells and organisms to populations, communities, and ecosystems are affected by complex biotic and abiotic interactions involving exchange of matter and free energy	50.2 52.1, 52.2, 52.3, 53.1, 53.2, 53.3, 53.4, 53.5 54.1, 542, 54.3, 54.4	 Cell density Biofilms Temperature Water availability Sunlight Symbiosis (mutualism, commensalism, and parasitism) Predator-prey relationships Water and nutrient availability, temperature, salinity, and pH

Essential knowledge	Chapters/sections	Illustrative examples covered
		 Water and nutrient availability Availability of nesting materials and sites Food chains and food webs Species diversity Population density Algal blooms
2.d.2 Homeostatic mechanisms reflect both common ancestry and divergence due to adaptation in different environments.	40.4, 40.5 55.1 (see illustrative examples for additional content)	 Gas exchange in aquatic and terrestrial plants Digestive mechanisms in animals such as food vacuoles, gastrovascular cavities, and one-way digestive systems Respiratory systems of aquatic and terrestrial animals Nitrogenous waste production and elimination in aquatic and terrestrial animals Excretory systems in flatworms, earthworms, and vertebrates Osmoregulation in bacteria, fish and protists Osmoregulation in aquatic and terrestrial plants Circulatory systems in fish, amphibians and mammals Thermoregulation in aquatic and terrestrial animals
2.d.3 Biological systems are affected by disruptions to their dynamic homeostasis.	40.4, 40.5 55.1	 Physiological responses to toxic substances Dehydration Immunological responses to pathogens, toxins, and allergens Invasive and/or eruptive species Human impact Hurricanes, floods, earthquakes, volcanoes, and fires Water limitation Salination
2.d.4 Plants and animals have a variety of chemical defenses against infections that affect dynamic homeostasis.	39.5 43.1, 43.2, 43.3, 43.4, 43.5	 Invertebrate immune systems have nonspecific response mechanisms, but they lack pathogen-specific defense responses Plant defenses against pathogens include molecular recognition systems with systemic responses; infection triggers chemical responses that destroy infected and adjacent cells, thus localizing the effects Vertebrate immune systems have nonspecific and nonheritable defense mechanisms against pathogens

Essential knowledge	Chapters/sections	Illustrative examples covered
2.e.1 Timing and coordination	19.2,	Morphogenesis of fingers and toes
of specific events are	21.2	Immune function
necessary for the normal		• C. elegans development
development of an organism,	38.1, 38.2	Flower Development
and these events are regulated		
by a variety of mechanisms.		
2.e.2 Timing and coordination	38.1, 38.2	• Circadian rhythms, or the physiological cycle of
of physiological events are		about 24 hours that is present in all eukaryotes
regulated by multiple	39.2, 39.3	and persists even in the absence of external cues
mechanisms.	24.1	• Diurnal/nocturnal and sleep/awake cycles
	24.1	• Jet lag in humans
	11.1	• Seasonal responses, such as hibernation,
	11.1	estivation, and migrationRelease and reaction to pheromones
		 Visual displays in the reproductive cycle
		· visual displays in the reproductive cycle
		• Fruiting body formation in fungi, slime molds,
		and certain types of bacteria
		• Quorum sensing in bacteria
2.E.3: Timing and	51.1, 51.2	Availability of resources leading to fruiting
coordination of behavior are		body formation in fungi and certain types of
regulated by various	39.2, 39.3	bacteria
mechanisms and are important		 Niche and resource partitioning
in natural selection.	51.2	• Mutualistic relationships (lichens; bacteria in
		digestive tracts of animals; and mycorrhizae)
	53.1	Biology of pollination
		• Hibernation
		• Estivation
		Migration
		• Courtship

Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life
processes.

Essential knowledge	Chapters/sections	Illustrative examples covered
3.A.1: DNA, and in some	5.5	Addition of a poly-A tail
cases RNA, is the primary		Addition of a GTP cap
source of heritable	27.1	• Excision of introns
information.		
	16.1, 16.2	Enzymatic reactions
		Transport by proteins
	17.1, 17.2, 17.3, 17.4	• Synthesis
		Degradation
	18.1	
		Electrophoresis
	20.1, 20.2, 20.3	Plasmid-based transformation
		Restriction enzyme analysis of DNA
		Polymerase Chain Reaction (PCR)
		Genetically modified foods
		Transgenic animals
		Cloned animals
		• Pharmaceuticals, such as human insulin or
		factor X
3.A.2 In eukaryotes,	12.1, 12.2, 12.3	Mitosis-promoting factor (MPF)
heritable information is		• Action of platelet-derived growth factor (PDGF)
passed to the next generation	13.1, 13.2, 13.3	Cancer results from disruptions in cell cycle
via processes that include the		control
cell cycle and mitosis, or		
meiosis plus fertilization.		
2 A 2 The shreen second		- Sighta call anomia
3.A.3 The chromosomal	14.1, 14.2, 14.3, 14.4	Sickle cell anemiaTay-Sachs disease
basis of inheritance provides an understanding of the		Huntington's disease
-		• X-linked color blindness
pattern of passage (transmission) of genes from		Trisomy 21/Down syndrome
parent to offspring		Klinefelter's syndrome
parent to orispring		· Kimelener s syndrome
		Reproduction issues
		• Civic issues such as ownership of genetic
		information, privacy, historical contexts, etc.
3.A.4 The inheritance pattern	15.1, 15.2, 15.3, 15.5	• Sex-linked genes reside on sex chromosomes (X
of many traits cannot be		in humans)
explained by simple		• In mammals and flies, the Y chromosome is
Mendelian genetics.		very small and carries few genes
		• In mammals and flies, females are XX and
		males are XY; as such, X-linked recessive traits

Essential knowledge	Chapters/sections	Illustrative examples covered
		 are always expressed in males Some traits are sex limited, and expression depends on the sex of the individual, such as milk production in female mammals and pattern baldness in males
3.B.1 Gene regulation results in differential gene expression, leading to cell specialization.	18.4, 19.2	 Promoters Terminators Enhancers
3.B.2 A variety of intercellular and intracellular signal transmissions mediate gene expression.	11.1, 11.4 18.4 19.2 21.2	 Cytokines regulate gene expression to allow for cell replication and division Mating pheromones in yeast trigger mating gene expression Levels of cAMP regulate metabolic gene expression in bacteria Expression of the SRY gene triggers the male sexual development pathway in animals Ethylene levels cause changes in the production of different enzymes, allowing fruits to ripen Seed germination and gibberellin Mating pheromones in yeast trigger mating genes expression and sexual reproduction Morphogens stimulate cell differentiation and development Changes in p53 activity can result in cancer HOX genes and their role in development
3.C.1 Changes in genotype can result in changes in phenotype.	15.4 16.2 17.7 23.4	 Antibiotic resistance mutations Pesticide resistance mutations Sickle cell disorder and heterozygote advantage
3.C.2 Biological systems have multiple processes that increase genetic variation.	18.3 13.4	No illustrative examples listed in Curriculum Framework.
3.C.3 Viral replication results in genetic variation, and viral infection can introduce genetic variation into the hosts.	18.1	 Transduction in bacteria Transposons present in incoming DNA

Essential knowledge	Chapters/sections	Illustrative examples covered
3.D.1 Cell communication processes share common features that reflect a shared evolutionary history.	11.1, 11.2	 Use of chemical messengers by microbes to communicate with other nearby cells and to regulate specific pathways in response to population density (quorum sensing) Use of pheromones to trigger reproduction and developmental pathways Response to external signals by bacteria that influences cell movement Epinephrine stimulation of glycogen breakdown in mammals Temperature determination of sex in some vertebrate organisms DNA repair mechanisms
3.D.2 Cells communicate with each other through direct contact with other cells or from a distance via chemical signaling.	11.1, 11.2	 Immune cells interact by cell-cell contact, antigen-presenting cells (APCs), helper T-cells. and killer T-cells. [See also 2.D.4] Plasmodesmata between plant cells that allow material to be transported from cell to cell Neurotransmitters Plant immune response Quorum sensing in bacteria Morphogens in embryonic development Insulin Human growth hormone Thyroid hormones Testosterone Estrogen
3.D.3. Signal transduction pathways link signal reception with cellular response.	11.3	 G-protein linked receptors Ligand-gated ion channels Receptor tyrosine kinases Ligand-gated ion channels Second messengers, such as cyclic GMP, cyclic AMP, calcium ions (Ca₂₊), and inositol triphosphate (IP₃)
3.D.4. Changes in signal transduction pathways can alter cellular response.	11.4	 Diabetes, heart disease, neurological disease, autoimmune disease, cancer, and cholera Effects of neurotoxins, poisons, and pesticides Drugs (Hypertensives, Anesthetics, Antihistamines, and Birth Control Drugs)

Essential knowledge	Chapters/sections	Illustrative examples covered
3.E.1. Individuals can act on	51.2, 51.3	· Fight or flight response
information and		· Predator warnings
communicate it to others.		· Protection of young
		· Plant-plant interactions due to herbivory
		· Avoidance responses
		 Herbivory responses Territorial marking in mammals Coloration in flowers Bee dances Birds songs Territorial marking in mammals Pack behavior in animals Herd, flock, and schooling behavior in animals Predator warning Colony and swarming behavior in insects Coloration Parent and offspring interactions Migration patterns Courtship and mating behaviors Foraging in bees and other animals
		 Avoidance behavior to electric fences, poisons, or traps
3.E.2. Animals have nervous systems that detect external and internal signals, transmit and integrate information, and produce responses.	48.1, 48.2, 48.3, 48.4, 48.5	 Acetylcholine Epinephrine Norepinephrine Dopamine Serotonin GABA
		 Vision Hearing Muscle movement Abstract thought and emotions Neuro-hormone production Forebrain (cerebrum), midbrain (brainstem), and hindbrain (cerebellum) Right and left cerebral hemispheres in humans

Big Idea 4: Biological systems interact, and these systems and their interactions possess complex properties.

Essential knowledge	Chapters/sections	Illustrative examples covered
4.A.1: The subcomponents of biological molecules and their sequence determine the properties of that molecule.	5.1, 5.2, 5.3, 5.4, 5.5	No illustrative examples listed in Curriculum Framework.
4.A.2: The structure and function of subcellular components, and their interactions, provide essential cellular processes.	6.2, 6.3, 6.4, 6.5	No illustrative examples listed in Curriculum Framework.
4.A.3: Interactions between external stimuli and regulated gene expression result in specialization of cells, tissues and organs.	21.2	No illustrative examples listed in Curriculum Framework.
4.A.4: Organisms exhibit complex properties due to interactions between their constituent parts.	48.4 (refer to illustrative examples for more)	 Stomach and small intestines Kidney and bladder Root, stem and leaf Respiratory and circulatory Nervous and muscular Plant vascular and leaf
4.A.5: Communities are composed of populations of organisms that interact in complex ways.	52.1, 52.3, 52.4, 52.5, 52.6 53.1, 53.2	 Predator/prey relationships spreadsheet model Symbiotic relationship Graphical representation of field data Introduction of species Global climate change models
4.A.6: Interactions among living systems and with their environment result in the movement of matter and energy.	53.2 54.1, 54.2, 54.3, 54.4, 55.4	No illustrative examples listed in Curriculum Framework.
4.B.1: Interactions between molecules affect their structure and function.	5.4 8.4, 8.5	No illustrative examples listed in Curriculum Framework.

Essential knowledge	Chapters/sections	Illustrative examples covered
4.B.2: Cooperative	6.4, 40.1, 40.2	• Exchange of gases
interactions within organisms		Circulation of fluids
promote efficiency in the use	(refer to illustrative	Digestion of food
of energy and matter.	examples)	• Excretion of wastes
		 Bacterial community in the rumen of animals Bacterial community in and around deep sea vents
4.B.3: Interactions between	53.1	Loss of keystone species
and within populations		• Kudzu
influence patterns of species		Dutch elm disease
distribution and abundance.		
4.B.4: Distribution of local	25.4	Dutch elm disease
and global ecosystems		Potato blight
changes over time.	55.1	Small pox [historic example for Native
	54.5	Americans]
		• El Nino
		Continental drift
		Meteor impact on dinosaurs
4.C.1: Variation in molecular	5.1, 5.2, 5.3, 5.4, 5.5	Different types of phospholipids in cell
units provides cells with a		membranes
wider range of functions.	19.5	Different types of hemoglobin
		• MHC proteins
		Chlorophylls
		• Molecular diversity of antibodies in response to
		an antigen
		• The antifreeze gene in fish
4.C.2: Environmental factors	14.3	• Height and weight in humans
influence the		• Flower color based on soil pH
expression of the genotype in		• Seasonal fur color in arctic animals
an organism.		• Sex determination in reptiles
		 Density of plant hairs as a function of herbivory Effect of adding lactose to a Lac + bacterial
		culture
		Effect of increased UV on melanin production
		in animals
		Presence of the opposite mating type on
		pheromones production in yeast and other fungi
		• Darker fur in cooler regions of the body in
		certain mammal species
		• Alterations in timing of flowering due to climate
		changes
		© 2011 The College Poord

Essential knowledge	Chapters/sections	Illustrative examples covered
4.C.3: The level of variation in a population affects population dynamics.	23.1, 23.2, 23.3	 <i>Campbell Biology</i> offers many examples for this area, such as: California condors Black-footed ferrets Prairie chickens Potato blight causing the potato famine Corn rust affects on agricultural crops Tasmanian devils and infectious cancer Not all animals in a population stampede Not all individuals in a population in a disease outbreak are equally affected; some may not show symptoms, some may have mild symptoms, or some may be naturally immune and resistant to the disease
4.C.4: The diversity of species within an ecosystem may influence the stability of the ecosystem.	14.3 23.1 53.2 55.1	No illustrative examples listed in Curriculum Framework.

Sections that are not covered will depend on which illustrative examples the teacher chooses. Visit <u>http://www.pearsonschool.com/APCampbellBiology</u> ("AP Bio Exam Redesign" section) to see which Concepts in *Campbell BIOLOGY AP* Edition*, 9th Edition are included in the Essential Knowledge and Objective outlined in the Curriculum Framework.