DEFINE microevolution

DEFINE exaptation

STATE the most likely first genetic material

LIST 5 requirements that a population must maintain to be in Hardy-Weinberg Equilibrium

LIST products formed as a result of Miller and Urey's experiment

OUTLINE punctuated equilibrium

OUTLINE how genotypic frequencies can change as a result of natural selection

OUTLINE homozygous genotypes and heterozygous genotypes

OUTLINE the bottleneck effect

OUTLINE the likelihood of a mutation occurring in an individual

OUTLINE the likelihood of a mutation occurring in a specific gene locus

OUTLINE evolutionary or Darwinian fitness

OUTLINE sexual selection

DESCRIBE Miller and Urey's experiment

CALCULATE allele and/or genotypic frequencies in a population using the Hardy-Weinberg Equilibrium

IDENTIFY the greatest threat to global biodiversity in particular

IDENTIFY reasons why some believe we are in a biodiversity crisis on this planet

IDENTIFY traits in organisms that make fossilization more or less likely

IDENTIFY evidence that can be used to develop evolutionary trees

IDENTIFY the most important sources of genetic variation in humans both in the short term and long term

IDENTIFY directional, stabilizing or disruptive selection from a given example

IDENTIFY behavioral, gametic, habitat, temporal or mechanical reproductive isolation from a given example

COMPARE divergent and convergent evolution

COMPARE allopatric speciation and sympatric speciation

COMPARE reproductive isolation and habitat isolation

COMPARE prezygotic and postzygotic reproductive barriers

COMPARE prokaryotic and eukaryotic cells

COMPARE plant and animal cells

SUGGEST why life's genetic material may have switched from RNA to DNA

SUGGEST a solution to save a population that finds itself in the extinction vortex

DISCUSS why science believes that prokaryotes preceded eukaryotes

DISCUSS why science believes that glycolysis may have been one of the earliest metabolic pathways in living organisms

DISCUSS the universal nature of the genetic code

EXPLAIN natural selection

EXPLAIN pesticide or antibiotic resistance

EXPLAIN genetic drift

EXPLAIN how the Hawaiian archipelago became so biodiverse

EXPLAIN the formation of fossils

EXPLAIN adaptive radiation

EXPLAIN why small populations are a concern to conservation biologists

- PREDICT the results in a population's trait due to natural selection given a description of its habitat before and after change in habitat occurs
- DEDUCE which population is subject to the bottleneck effect given certain data
- DEDUCE evolutionary relationship(s) from a table of molecular data
- DEDUCE amino acid sequences when given either the DNA coding strand, DNA template strand or mRNA strand
- DEDUCE the DNA coding strand, DNA template strand or mRNA strand when given a particular amino acid sequence
- ANALYZE a phylogenetic tree, for relatedness, common ancestry, extinction, etc