EXAM THREE EXPECTATIONS

ENVIRONMENTAL SCIENCE EXAM THREE "THE LIVING WORLD"

STATE the microscopic producers in an aquatic ecosystem

STATE the biome that supports most of the commercially valuable seafood at some point in its life cycle

STATE the principle of environmental unity

STATE the first and second laws of thermodynamics

STATE how trophic-level efficiency is measured

STATE the ultimate source of energy for life on this planet

DEFINE ecosystem

DEFINE species diversity

DEFINE adaptations (biological)

DEFINE resilience (ecosystems)

DEFINE succession

DEFINE ecological gradient

DEFINE evolution

DEFINE biomass

LIST traits of immature ecosystems

LIST processes that can change gene frequency in a population

LIST the evolutionary process that eliminates variation from a population

LIST the evolutionary process that introduces variation from a population

LIST traits common to early successional plants

DRAW / LABEL a biomass pyramid with its organisms

OUTLINE the carbon cycle

OUTLINE the most basic processes of ecosystems (2 of them)

OUTLINE the role of genetic drift in evolution

OUTLINE the role of mutations in evolution

OUTLINE photosynthesis from an energy stand point

DESCRIBE ecological succession (terrestrial and aquatic)

DESCRIBE natural selection

DESCRIBE invasive or non-native species and their effects on communities

DESCRIBE energy flow through the biosphere

IDENTIFY an area in the ocean with high productivity

IDENTIFY ecosystem services from a list

COMPARE fundamental and realized niches

COMPARE different predator populations PREDICT which is most stable

COMPARE different populations PREDICT which would have a greater evolutionary response

COMPARE different regions and PREDICT which would have the highest diversity of life

COMPARE closed and open systems

COMPARE primary and secondary succession

COMPARE potential and kinetic energy

COMPARE biological abundance and diversity

SUGGEST / EXPLAIN how organisms gain adaptive advantages over others

DISCUSS the importance of biodiversity and why it should be protected

DISCUSS earth as both a closed and open system (in terms of matter and energy)

DISCUSS the role of sea otters in a kelp forest community

DISCUSS whether or not life is in violation of the second law of thermodynamics

DISCUSS the role of fire in ecosystems

EXPLAIN predator and prey relationships and their effect on each other

EXPLAIN bacterial (or other pests) resistance

EXPLAIN trophic-level efficiency

PREDICT the outcome when two species share a niche

PREDICT the effect of "closing" an initially "open" system

PREDICT which extinction would have the greatest/least effect on the rest of life

PREDICT where primary or secondary succession would occur given locations to choose from

EVALUATE a fictional ecosystem and the likely hood that it could exist in reality

DESIGN a food chain from a list of organisms

ANALYZE a graph of predator and prey relationships

ANALYZE a pyramid of energy DEDUCE the amount of energy/food needed if organisms move from one trophic level to another

ANALYZE a moving object DEDUCE its potential and kinetic energy at various positions

ANALYZE a line graph with error bars