(a) • Maximum 4 points for this part of the question (1 point earned for each bullet below, up to 4)

(Maximum 3 points, 1 for each bullet)

Describe the use of plasmid for cloning/sequencing a human gene

- Cut plasmid with "restriction" enzyme
- Cut/isolate human sequence with the corresponding "restriction" enzyme
- Mix/anneal/ligate
- Introduce recombinant plasmid into bacteria
- Select recombinant bacteria (e.g., antibiotic resistance, fluorescence, reporter gene, etc.)
- Bacterial reproduction used to amplify the sequence
- Describe either degradative (Maxam-Gilbert) or dideoxy (Sanger) method to generate fragments
- Electrophoresis to separate fragments
- Read the sequence (automated method is OK)

(Maximum 3 points, 1 for each bullet)

Explain the contribution of this procedure

- Source of the DNA is immaterial to cloning
- Used to produce transgenic organisms
- Used to make human proteins (e.g., insulin, HGH)
- Understanding gene structure/regulation
- Comparative genomics
- Development of gene therapies
- Making gene library
- · Amplifying a particular sequence
- Maximum 4 points for this part of the question (1 point earned for each bullet below, up to 4)

(Maximum 3 points, 1 for each bullet)

Describe PCR

- · Heat to separate strands
- Add primers
- Cool to anneal
- Add polymerase and/or nucleotides
- Specification of heat stable (Taq) polymerase
- Description of thermocycling process
- Repetition of process

(a) Explain how the reduction and rearrangement are accomplished in meiosis. (5 points maximum)

REDUCTION

l point: (homologous) chromosomes pair, then separate and move to opposite poles during 1st meiotic division

1 point: chromatids separate during 2nd meiotic division

1 point: two rounds of cell
OR (nuclear) division but

REARRANGEMENT

l point: crossing over (in proper context) l point: random alignment (independent assortment) of tetrads

1 point: elaboration (e.g.: correct mechanism/description or consequences of one of the above) *

*NOTE: Diagrams that are clearly labeled and are described in the essay portion are acceptable and may receive a point

(nuclear) division but only one replication of the chromosomes

(b) Several human disorders occur as a result of defects in the meiotic process. Identify ONE such chromosomal abnormality; what effects does it have on the phenotype of people with the disorder? Describe how this abnormality could result from a defect in meiosis. (4 points maximum)

CHROMOSOMAL ABNORMALITY

1 point: Identify one condition by name or description (e.g.: Down or trisomy 21; Turner or XO; fragile X; cri-du-chat or 5p-; etc.)

1 point: Phenotype of the example given above

1 point: Name or identify the meiotic event (e.g.: nondisjunction, unequal crossing over, inversion, mispairing)

1 point: Description of the meiotic event *

(c) Production of offspring by parthenogenesis or cloning bypasses the typical meiotic process. Describe either parthenogenesis or cloning and compare the genomes of the offspring with those of the parents. (3 points maximum)

CLONING OR PARTHENOGENESIS

1 point: Definition

- Parthenogenesis: development of an unfertilized egg into an adult; often the adult is haploid OR
- Cloning: using a somatic cell or cells from a multicellular organism to make one or more genetically identical individuals (or inducing a diploid body cell of an organism to revert to its embryonic state and then develop into a complete adult organism without fertilization)

1 point: Description of an example or the process in a plant or animal (parthenogenesis is rare in plants) 1 point: Comparison of the genomes of offspring and parents (e.g. identical for cloning)

3.A.1 and 3.A.2 FRQ Formatives Rubrics

3.

NOTE: To receive 10 points, a student must earn at least 1 transcription point and 1 translation point from parts (a), (b), or (c).

Parts (a), (b), and (c) (9 points maximum)

Part (a)

Transcription	Translation	
DNA template	mRNA template	
 complimentary RNA (base-pairing) 	 codon/anticodon 	
 RNA produced by RNA polymerase 	 tRNA carries amino acid 	
 promoter region/TATA box 	 role of ribosome 	
 transcription factors 	 initiation (fMet, Shine-Delgarno) 	
 DNA unwound (partially, temporarily) 	 elongation (peptide bond formation) 	
 posttranscriptional processing 	 termination description 	

Part (b) NOTE: Students must provide specific similarity AND explanation to earn a point.

Similarity	Explanation	Explanation	
	Transcription	Translation	
base pairing	DNA-RNA, specific base examples	mRNA-tRNA (codon-anticodon), specific base examples	
 polymer formed 	RNA	polypeptide	
 specialized protein 	RNA polymerase	initiation factors, etc.	
 specific start sites 	promoter/TATA	initiation (start) codon	

Di	fference	Explanation	Explanation	
		Transcription	Translation	
•	location in cell (eukaryote)	nucleus	cytoplasm, rough ER	
•	product	RNA	polypeptide	
•	template	DNA	mRNA	
•	purpose	transfer information	make proteins	
•	enzymes	RNA polymerase	peptide bond-forming enzyme (peptidyl transferase)	

- Part (d) (3 points maximum)

 Folding

 Cleavage

 Chemical modification

 Elaboration—specifics of folding, chaperones, types of bonds, role of Golgi, incorporation into existing molecular arrays, etc.

A molecule of messenger RNA (mRNA) has just been synthesized in the nucleus of a human cell.

(a) What type of modifications may occur to this RNA before it leaves the nucleus?

One point for each of the following explanations/identifications (3 points maximum):

- Difference between introns and exons
- Description of splicing
- 5' cap added or description of function
- · 3' poly A tail added or description of function
- (b) Once in the cytoplasm, how is the mRNA translated to a protein?

One point for each of the following explanations/identifications (6 points maximum):

- Description of the role of tRNA in the transport of amino acids
- Description of the ribosome/rRNA
- Peptide bond formation (or the connecting of amino acids into a polypeptide chain)
- Concept of codon-anticodon binding
- Concept of the role of the genetic code (e.g., mRNA bases determine the sequence of amino acids)
- · Description of stages (initiation, elongation, and termination)
- Elaboration point for a detailed explanation—examples of acceptable answers include, but are not limited to, the following:
 - Description of 40S and 60S ribosomal subunits
 - Role of aminoacyl-tRNA synthetase
 - Structure of tRNA
 - Use of GTP as energy source
- (c) If the cell is a secretory cell, how is the protein from part (b) eventually targeted, packaged, and secreted to the exterior of the cell?

One point for each of the following explanations/identifications (3 points maximum):

- · Role of chaperones in folding a polypeptide into the protein
- · Modification of the protein or addition of sugars and/or phosphate
- Concept of the endomembrane system (description of protein moving from ER to Golgi to vesicles)
- Exocytosis through the fusion of the vesicle with the cell membrane

Describe plasmid modification (8 points maximum):

Topic	Description (1 point each)	
Plasmid vector	Describes plasmid as small circular DNA	
Cut (cleave) DNAs	Use of restriction endonucleases (RE)	
	Plasmid and inserted DNA must have same RE cut ends or be cut by same RE	
Sticky ends	Ends of DNA should be sticky, wanting to bond with matching ends	
	Generate ends for attachment using endonucleases	
Ligase	For joining of sticky ends	
Orientation	Correct orientation of insertion to ensure expression	
Gene of interest	DNA cut should be a complete sequence of gene	
	Attach piece with a promoter or insert next to promoter	
Reporter gene	Gene used to identify insertion of desired DNA	
	Insert DNA with a gene that produces a new phenotype	
Selective marker	Inserted to help identify the DNA insertion (e.g., antibiotic resistance)	
AUG in place	Ensure proper start codon	
Uptake of plasmid	Calcium chloride and heat shock, electroporation to make competent	
Alternative procedures	Blunt cuts; T4 ligase; add terminal transferase to add poly (A) to 3' end	

Describe plasmid uptake and how transformation is determined (6 points maximum):

Topic	Topic Description (1 point each)		
Transformation	Defined process of transformation of a plasmid		
Isolation	Isolate plasmids/agar plate that grows only colonies of resistance gene		
Antibiotic	Use of antibiotic resistance/sensitivity genes		
	Detailed description of antibiotic resistance lab procedure		
Gel electrophoresis	Isolate plasmid using electrophoresis		
	Detailed description of gel electrophoresis for isolation		
Retrieval	Retrieve altered plasmid		
Protein	Identification of new protein, possible glowing marker protein		
	Detailed description of retrieval or protein method		
Tag	Fluorescent marker, etc.		
	Detailed description of alternate method		